Tamil Nadu Solar Policy 2019

 

Tami Nadu SOLAR POLICY 2019

Tamil Nadu Energy Development Agency announced the final Tamil Nadu solar energy policy 2019. The policy intends to include solar energy in demand side management, energy conservation, energy efficiency, smart grids etc.the policy also talks about encouraging public-private partnerships, joint ventures etc. to accelerate solar energy projects, manufacturing facilities, and R&D.

  • Tamil Nadu intends to have an installed capacity of 9,000 MW by 2023, of which 40% is intended to come from rooftop solar plants.
  • The policy is applicable to both utility & consumer category systems.

Utility category: where the objective is sales of solar energy to a distribution licensee or a third party or self-consumption at a remote location (wheeling). For these systems, the grid connection is through a dedicated gross metering interface.

Consumer category systems: where the objective is self-consumption of solar energy and export of surplus energy to the grid. For these systems, the grid connection is through a consumer service connection of a distribution licensee.

  • The tariffs will be based on market-based competitive bidding & net feed-in tariff decided by TNERC time to time.
  • TNERC may introduce Time of Day (TOD) solar energy Feed-in tariffs to encourage solar energy producers & solar energy storage operators to feed energy into the grid when the energy demand is high.

Types of solar plant models:

  • Upfront ownership: The purchaser of the solar system pays the supplier for the capital cost and takes ownership of the solar system.
  • Deferred ownership: The solar system is installed and operated by the supplier. The purchaser makes system performance-based payments to the supplier or leases the system from the supplier. System ownership is transferred to the purchaser on a mutually agreed date or is triggered by a mutually agreed event.

Incentives:

  • Rooftop solar plants will be exempted from electricity-tax for two years from the date of the policy.
  • Solar energy injected into the grid of the distribution licensee by solar energy producers who have no renewable energy purchase obligations (non-obligated entities), including the solar energy export by non-obligated electricity consumers, can be claimed by the distribution licensee towards the fulfillment of their Renewable Energy Purchase Obligations (RPO).
  • The government will provide land for the development of solar system manufacturing components in the state, components like solar cells, inverters, mounting structures, and batteries etc.

Grid connectivity and Energy evacuation:

  • For consumer category solar PV systems, the system capacity at the service connection point shall not exceed 100% of the sanctioned load of the service connection.
  • For high tension consumers, open access regulations of TNERC will apply, subject to the conditions imposed by SLDC. However, wheeling for less than 1 MW shall not be allowed.

TEDA and TANGEDCO will be the leading government agencies in implementing the new solar policy in the state of Tamil Nadu.

Source: Reconnect
Posted in DISCOM, India, Renewables, Transmission Charges | Leave a comment

Centre offers 50 paise/unit support for solar projects using locally produced equipment

The Centre has offered a viability gap support of ₹70 lakh per MegaWatt (MW) for solar projects that will be built using domestically sourced cells and modules. This support will be implemented through the Central Public Sector Undertaking (CPSU) Scheme Phase-ll.

“This works out to a support of around 50 paise per unit for the projects bid out by public sector undertakings (PSUs). Under the scheme, PSU companies (like NTPC, NHPC or NLC) will first compete on the quantum of Viability Gas Funding (VGF) support. They will have to implement a solar power project that uses only domestically produced cells and modules,” a senior MNRE official told BusinessLine.

Under the scheme approved by the Cabinet Committee on Economic Affairs recently, the Centre aims to set up 12,000-MW grid-connected Solar Photovoltaic (PV) power projects by the government producers. A VGF support of ₹8,580 crore for self-use or use by Government or Government entities, both Central and State Governments has been approved for the same.

“After this, these projects will be offered by the PSUs to engineering procurement construction contractors. The PSUs may also proceed to source domestically produced cells and modules for developing the project. This VGF is subject to a tariff cap of ₹3.50 a unit on the power sold by the PSUs from these projects,” he said.

“The bids for first project for the scheme will be finalised this year,” the official added.

Under the earlier scheme, VGF for projects that used domestically sourced cells and modules was ₹1 crore per MW. For projects where domestically produced modules are used, the VGF was fixed at ₹50 lakh per MW.

“The revised quantum of support has been calculated based on the difference between the price of domestically produced cells and modules and imported ones,” the official said.

According to the Indian Solar Manufacturers Association, the installed domestic solar cell manufacturing capacity of the country is 3 GW while the installed Solar PV modules capacity is 9 GW.

“Currently the primary components for domestic manufacturing of cells, the wafers, are imported. Essentially there is a 40 per cent value addition to the imported product that takes place in India. The price between the imported solar cells and domestic cells has also narrowed so the present VGF offered is optimum,” an official at a private solar power project developer said.

The projects will be developed through PSUs in four years, from 2019-2020 to 2022-2023.

Source: Hindu Business Line

Posted in Renewables | Tagged , , , , , , , , , | Leave a comment

Ensuring Performance and Safety of Rooftop Solar PV Projects

By Dwipen Borah
The fast scaling up of the grid connected PV market in India has created an unhealthy competition among project developers, construction companies, equipment suppliers and service providers. This unfortunately, results in the compromise of quality standards in – project design, selection of equipments and balance of system, installation and even O&M practice in many instances. A large number of solar power plants have been reported to show poor performance due to known or unknown reasons. Apart from that a number of solar power plants are damaged by storms and gutted into fire. In this note we are discussing performance and safety issues of grid connected rooftop PV projects. 

Figure 1: Performance variation in 30 different rooftop PV Plants in the same geographical area

What determines PV power plant performance?

PV systems are generally exposed to a variety of losses due to environmental factors, device limits and manufacturing defects. Such losses include – soiling, shading, manufacturer’s tolerance, temperature, voltage drop, inverter efficiency, orientation and tilt angle of the module(s), degradation of the solar module(s) and any other location specific factors that could have an impact on the plant’s performance. Favourable solar radiation and the best of equipment cannot alone perform well if the system is not designed, installed and maintained appropriately.

Though there are many factors responsible for the under-performance of a PV power plant, this note discusses the following key issues in regards to performance and safety of rooftop PV projects.

Accurate site assessment and planning:

The site parameters that influence performance and reliability of a PV system are – access to solar radiation, near shadow and far shadow, ambient temperature, air flow and ventilation, basic wind speed, height of building, terrain, orientation, dust level and pollution, salinity, humidity, extreme weather conditions etc. A number of parameters are likely to be variable from one site to another even in the same geographical area. Therefore, it is crucial to plan a solar PV project to suit the site parameters, and also to select the right components and customising the design accordingly to ensure better performance and safety. An inaccurate site assessment will lead to wrong design and installation and poor maintenance of a PV system, which eventually follows into poor performance and unreliable system functioning.

Selection of inverter and system design:

A well-designed/installed grid-connected PV system should have fault free operation for many years. Poor system design can result in the PV array operating at voltages outside the inverter voltage window and consequent disconnection of the inverter from the grid for long durations of time. Poor system design in relation to the PV array and inverter, also forces the inverter to operate very inefficiently. In many cases, the owner has been given a prediction of unrealistically high energy yield from their PV system.

Shadow analysis at site and string management:

It is highly essential for shadows to not be cast on the array by structures, trees, chimneys, fences, and other objects between the hours of best insolation. The site specific output from the PV array can only be accurately calculated once the actual solar access is known for the installation site. However, energy loss due to the effect of any shadow is not proportionate to the array area covered under the shadow. When a PV module is partially shaded, the use of bypass diodes in the modules will ensure optimum output from the PV under shaded conditions, However, the maximum power point voltage in the string will decrease. Thus, the design of the PV array strings must ensure that the maximum power point voltage will not drop outside the inverter voltage window when the modules in the string are shaded. Hence, when the effect of partial shadow is unavoidable, selection of an appropriate inverter and placement of module strings according to shadow coverage is critical to enhance the performance of any rooftop PV system.

Figure 2: Selection of right inverter type and placement of modules string can substantially reduce shadow loss

Module cleaning and access to maintenance:

Build-up of dirt on the array can substantially affect system performance. It is essential to clean the modules regularly to maximize energy output from a solar power plant. However, wrong cleaning practices and low-quality water used with inappropriate cleaning means may damage the modules and other array components, lowering system performance as well. It is also essential to train the cleaning personnel on proper cleaning methods and use of appropriate cleaning tools. Cleaning procedures must be based on module manufacturer’s instructions, site conditions, quality of water and adopted cleaning mechanism. It is often seen that PV arrays are not even accessible to carry out cleaning processes on, and it may so happen that one has to step onto the modules during cleaning and maintenance work. While inaccessibility keeps the modules from being cleaned, producing less energy; stepping on them gives way to the development of micro cracks, damaging the modules.

Figure 3: Keeping the modules clean and adopting correct cleaning practice is key to better performance of solar power plant

Safety from wind loading:

Structure failure is a very commonly rising complication in Indian solar projects. In many cases, the structure may not fail as such, but the PV modules are damaged due to high stress or deflection developed in the structure which is often wrongly designed and installed. The main reason for this is inadequate design or wrong design criteria. In many cases structures are conceptualised just to enhance energy generation with no consideration of wind loading. Structural design analysis must include criteria that requires not only protecting the structure from excessive loading but also preventing it from deviating due to permissible deflection and stress on the modules fixed on it. Apart from the strength and loading capacity, an array mounting structure must ensure that the PV array receives optimum solar radiation and reduces temperatures loss by allowing enough air circulation. It is also important to ensure that factors such as structure design, placement, orientation, tilt and shading are aligned with electrical string design and choice of inverter.

Figure 4: PV plant damaged by strong wind

Safety from Fire:

Unlike conventional electrical products, PV modules and wiring do not have an overall enclosure to contain arcs and fires resulting from component or system faults. Grid connected rooftop PV arrays generally operate at 150V – 800V DC voltages, highly capable of sustaining DC arcs. An arc in the PV array can occur due to a faulty or loose connection (series arc), a short circuit due to wrong polarity or failure of insulation (parallel arc). If an arc develops due to a fault in a PV array, it can result in causing significant damage to the array and may also result in damage to adjacent wiring and building structures.

Since PV systems contain a large number of series connections, occurrence of a series arc is very common, which may be due to loose connections and poor quality/mismatch of connectors. Parallel arcs are a result of short circuits in the system due to damage of wires or due to connection of wires with wrong polarity. This can cause severe damage to the PV system and building property as well.

Figure 5: Fire from series arc due to loose connection in the module junction box

Conclusion:

Success of a rooftop PV project is defined by the return on investment which is the direct outcome of reliable operation and lifetime performance of the system. In general PV systems are exposed to a variety of losses some due to environmental factors, some due to device limits and others due to manufacturing defects. The losses will include things such as dirt on module, shading, temperature, voltage drop, inverter efficiency, orientation and tilt angle of the module, degradation of solar modules and any other location specific factors that could have impact on the plant performance. But these are not only the factors that determine PV system performance. Favourable solar radiation and best of the equipments cannot alone perform well if the system is not designed or installed in a technically competent way. Project managers and design engineers must identify the critical site parameters carefully, assess the long term impact on the system and consider them in the design process to build sustainable and profitable solar PV project.

Posted in Renewables | Leave a comment

Industry Trends in PV Module Quality from over 250 Factory Audits – PI Berlin

This study analyzes trends in PV module quality from over 250 independent factory audits conducted on more than 120 manufacturers by PI Berlin since 2012. The results provide useful insights into the major trends in PV modules over time, by region of manufacturing as well as by manufacturing capacity, location and level of automation.

white paper – industry trends in pv module quality

Audits designed to understand risk

Factory audits provided by third parties often differ in terms of their aim, scope and auditing techniques. PI Berlin focuses on audits designed to assess risk for the buyer or investor – a process which doesn’t just assess the manufacturers’ compliance to their own quality standards, but also evaluates risks in the standards themselves. This ensures that all manufacturers are held to the same high standard and results can be bench-marked across manu- facturers.

A PI Berlin factory audit typically consists of the following major components:

■ Certification compliance

■ Bill of material (BOM) controls

■ Incoming quality controls (IQC)

■ In-line process and quality controls (IPQC)

■ Outgoing quality controls (OQC)

■ Equipment maintenance and calibration

■ Supplier, quality, product and engineering change management

■ Human resource management

 

Posted in Cells & Modules, Crystalline, PV, Solar PV | Tagged , , , , , , , | Leave a comment

Uttar Pradesh Electricity Regulatory Commission Rooftop Solar PV Grid Interactive Systems Gross & Net Metering Regulations January 2019

Posted in DISCOM, India, Policy, PV, Regulations and Procedures, Renewables, Residential, Rooftop | Tagged , , , , , , , , | Leave a comment

IEA-PVPS T13-01 2014 Review of Failures of Photovoltaic Modules Final – Performance and Reliability of Photovoltaic Systems

Posted in Crystalline, Renewables, Solar | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

BIS for Inverters extended to June 2019

MINISTRY OF NEW AND RENEWABLE ENERGY NOTIFICATION
New Delhi, the 4th January, 2019

S.O. 46(E).—whereas the Central Government had issued “Solar Photovoltaics, Systems, Devices and Components Goods (Requirements for Compulsory Registration) Order, 2017“ vide S.O. 2920(E) dated 5th September, 2017 for six products included in the Schedule with the date of coming into force with effect from 5th September, 2018. Andwhereas, after having discussions with the various stakeholders including the Bureau of Indian Standards (BIS), the date of coming into force of the said Order was advanced to 16th April, 2018 on the condition of self-certification by manufacturers for products at Sl. No. 1-3 in the Schedule annexed to the order applicable till 30th June, 2018 published in Gazette of India notified on 16th April, 2018 vide S.O. 1602(E), which was revised vide S.O. 2183(E) published in Gazette of India on 30.05.2018.

2. And whereas, the industry had sought more time for compliance to the order and whereas the issues involved were discussed with related stakeholders, the self-certification was extended to 4th September, 2018 vide S.O. 3449(E) published in Gazette of India on 13.07.2018, which was further extended to 20th September 2018 for all products listed in the order vide S.O No. 4787(E) published in Gazette of India on 12th September 2018, and further to 1st January 2019 from 20th September, 2018 videS.O. 5259(E) dated 12.10.2018 for all items with dates of implementation indicated against each product in the Schedule annexed for smooth implementation of the order.

3. And whereas, the issues related to testing of inverters (items 4-5) was discussed with industry and test labs recognized by BIS, it is hereby notified that the date of self- certification relaxation for these items stands extended by six months i.e. up to 30th June 2019 subject to the condition that such manufacturers should have valid IEC and test reports from international test labs corresponding to IS. These manufacturers will be allowed self-certification without submitting samples to test labs as the series guidelines for submitting samples to test labs are under preparation.

[F. No. 223/36/2018-Quality Control] Dr. B. S. NEGI, Adviser/Scientist ‘G’, MNRE

Click here for the document 194783

Posted in India, MNRE, Renewables | Tagged , , , , , , , | Leave a comment